Information on Result #703216

Linear OA(367, 264, F3, 19) (dual of [264, 197, 20]-code), using construction XX applied to C1 = C([239,13]), C2 = C([1,15]), C3 = C1 + C2 = C([1,13]), and C∩ = C1 ∩ C2 = C([239,15]) based on
  1. linear OA(356, 242, F3, 17) (dual of [242, 186, 18]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,13}, and designed minimum distance d ≥ |I|+1 = 18 [i]
  2. linear OA(350, 242, F3, 15) (dual of [242, 192, 16]-code), using the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,15], and designed minimum distance d ≥ |I|+1 = 16 [i]
  3. linear OA(361, 242, F3, 19) (dual of [242, 181, 20]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,15}, and designed minimum distance d ≥ |I|+1 = 20 [i]
  4. linear OA(345, 242, F3, 13) (dual of [242, 197, 14]-code), using the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,13], and designed minimum distance d ≥ |I|+1 = 14 [i]
  5. linear OA(35, 16, F3, 3) (dual of [16, 11, 4]-code or 16-cap in PG(4,3)), using
  6. linear OA(31, 6, F3, 1) (dual of [6, 5, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(367, 242, F3, 2, 19) (dual of [(242, 2), 417, 20]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(367, 242, F3, 3, 19) (dual of [(242, 3), 659, 20]-NRT-code) [i]
3Linear OOA(367, 242, F3, 4, 19) (dual of [(242, 4), 901, 20]-NRT-code) [i]
4Linear OOA(367, 242, F3, 5, 19) (dual of [(242, 5), 1143, 20]-NRT-code) [i]
5Digital (48, 67, 242)-net over F3 [i]