Information on Result #703221

Linear OA(365, 262, F3, 18) (dual of [262, 197, 19]-code), using construction XX applied to C1 = C([105,120]), C2 = C([108,122]), C3 = C1 + C2 = C([108,120]), and C∩ = C1 ∩ C2 = C([105,122]) based on
  1. linear OA(355, 242, F3, 16) (dual of [242, 187, 17]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {105,106,…,120}, and designed minimum distance d ≥ |I|+1 = 17 [i]
  2. linear OA(351, 242, F3, 15) (dual of [242, 191, 16]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {108,109,…,122}, and designed minimum distance d ≥ |I|+1 = 16 [i]
  3. linear OA(361, 242, F3, 18) (dual of [242, 181, 19]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {105,106,…,122}, and designed minimum distance d ≥ |I|+1 = 19 [i]
  4. linear OA(345, 242, F3, 13) (dual of [242, 197, 14]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {108,109,…,120}, and designed minimum distance d ≥ |I|+1 = 14 [i]
  5. linear OA(33, 13, F3, 2) (dual of [13, 10, 3]-code), using
  6. linear OA(31, 7, F3, 1) (dual of [7, 6, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(365, 262, F3, 2, 18) (dual of [(262, 2), 459, 19]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(365, 262, F3, 3, 18) (dual of [(262, 3), 721, 19]-NRT-code) [i]
3Linear OOA(365, 262, F3, 4, 18) (dual of [(262, 4), 983, 19]-NRT-code) [i]
4Linear OOA(365, 262, F3, 5, 18) (dual of [(262, 5), 1245, 19]-NRT-code) [i]
5Digital (47, 65, 262)-net over F3 [i]