Information on Result #703242

Linear OA(356, 242, F3, 17) (dual of [242, 186, 18]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(356, 169, F3, 2, 17) (dual of [(169, 2), 282, 18]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(356, 169, F3, 3, 17) (dual of [(169, 3), 451, 18]-NRT-code) [i]
3Linear OOA(356, 169, F3, 4, 17) (dual of [(169, 4), 620, 18]-NRT-code) [i]
4Linear OOA(356, 169, F3, 5, 17) (dual of [(169, 5), 789, 18]-NRT-code) [i]
5Digital (39, 56, 169)-net over F3 [i]
6Linear OA(361, 252, F3, 18) (dual of [252, 191, 19]-code) [i]Construction XX with Cyclic Codes
7Linear OA(369, 260, F3, 20) (dual of [260, 191, 21]-code) [i]
8Linear OA(387, 283, F3, 23) (dual of [283, 196, 24]-code) [i]
9Linear OA(376, 267, F3, 21) (dual of [267, 191, 22]-code) [i]
10Linear OA(384, 275, F3, 23) (dual of [275, 191, 24]-code) [i]
11Linear OA(375, 261, F3, 22) (dual of [261, 186, 23]-code) [i]
12Linear OA(373, 259, F3, 21) (dual of [259, 186, 22]-code) [i]
13Linear OA(382, 268, F3, 23) (dual of [268, 186, 24]-code) [i]
14Linear OA(390, 276, F3, 25) (dual of [276, 186, 26]-code) [i]
15Linear OA(397, 283, F3, 26) (dual of [283, 186, 27]-code) [i]