Information on Result #703260
Linear OA(360, 242, F3, 18) (dual of [242, 182, 19]-code), using the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,18], and designed minimum distance d ≥ |I|+1 = 19
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(360, 183, F3, 2, 18) (dual of [(183, 2), 306, 19]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(360, 183, F3, 3, 18) (dual of [(183, 3), 489, 19]-NRT-code) | [i] | ||
3 | Linear OOA(360, 183, F3, 4, 18) (dual of [(183, 4), 672, 19]-NRT-code) | [i] | ||
4 | Linear OOA(360, 183, F3, 5, 18) (dual of [(183, 5), 855, 19]-NRT-code) | [i] | ||
5 | Digital (42, 60, 183)-net over F3 | [i] | ||
6 | Linear OA(368, 255, F3, 20) (dual of [255, 187, 21]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
7 | Linear OA(377, 264, F3, 22) (dual of [264, 187, 23]-code) | [i] | ✔ | |
8 | Linear OA(375, 261, F3, 21) (dual of [261, 186, 22]-code) | [i] | ✔ | |
9 | Linear OA(392, 283, F3, 24) (dual of [283, 191, 25]-code) | [i] | ✔ | |
10 | Linear OA(390, 276, F3, 24) (dual of [276, 186, 25]-code) | [i] | ✔ | |
11 | Linear OA(3102, 283, F3, 27) (dual of [283, 181, 28]-code) | [i] | ✔ | |
12 | Linear OOA(360, 121, F3, 2, 18) (dual of [(121, 2), 182, 19]-NRT-code) | [i] | OOA Folding |