Information on Result #703274

Linear OA(381, 242, F3, 24) (dual of [242, 161, 25]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {99,100,…,122}, and designed minimum distance d ≥ |I|+1 = 25

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(390, 277, F3, 24) (dual of [277, 187, 25]-code) [i]Construction XX with Cyclic Codes
2Linear OA(389, 275, F3, 24) (dual of [275, 186, 25]-code) [i]
3Linear OA(387, 269, F3, 24) (dual of [269, 182, 25]-code) [i]
4Linear OA(385, 262, F3, 24) (dual of [262, 177, 25]-code) [i]
5Linear OA(384, 260, F3, 24) (dual of [260, 176, 25]-code) [i]
6Linear OA(395, 262, F3, 27) (dual of [262, 167, 28]-code) [i]
7Linear OA(387, 253, F3, 26) (dual of [253, 166, 27]-code) [i]
8Linear OA(394, 260, F3, 27) (dual of [260, 166, 28]-code) [i]
9Linear OA(3110, 277, F3, 32) (dual of [277, 167, 33]-code) [i]
10Linear OA(3108, 272, F3, 32) (dual of [272, 164, 33]-code) [i]
11Linear OA(3119, 285, F3, 33) (dual of [285, 166, 34]-code) [i]
12Linear OA(3109, 275, F3, 32) (dual of [275, 166, 33]-code) [i]
13Linear OA(3107, 270, F3, 32) (dual of [270, 163, 33]-code) [i]
14Linear OA(3118, 283, F3, 33) (dual of [283, 165, 34]-code) [i]
15Linear OA(3115, 275, F3, 33) (dual of [275, 160, 34]-code) [i]
16Linear OA(393, 254, F3, 28) (dual of [254, 161, 29]-code) [i]
17Linear OA(3113, 271, F3, 34) (dual of [271, 158, 35]-code) [i]
18Linear OA(3120, 278, F3, 35) (dual of [278, 158, 36]-code) [i]
19Linear OA(3129, 287, F3, 37) (dual of [287, 158, 38]-code) [i]