Information on Result #703284

Linear OA(382, 268, F3, 23) (dual of [268, 186, 24]-code), using construction XX applied to C1 = C([238,16]), C2 = C([0,18]), C3 = C1 + C2 = C([0,16]), and C∩ = C1 ∩ C2 = C([238,18]) based on
  1. linear OA(371, 242, F3, 21) (dual of [242, 171, 22]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−4,−3,…,16}, and designed minimum distance d ≥ |I|+1 = 22 [i]
  2. linear OA(361, 242, F3, 19) (dual of [242, 181, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
  3. linear OA(376, 242, F3, 23) (dual of [242, 166, 24]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−4,−3,…,18}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  4. linear OA(356, 242, F3, 17) (dual of [242, 186, 18]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
  5. linear OA(35, 20, F3, 3) (dual of [20, 15, 4]-code or 20-cap in PG(4,3)), using
  6. linear OA(31, 6, F3, 1) (dual of [6, 5, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(382, 134, F3, 2, 23) (dual of [(134, 2), 186, 24]-NRT-code) [i]OOA Folding