Information on Result #703290
Linear OA(366, 242, F3, 20) (dual of [242, 176, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(371, 252, F3, 21) (dual of [252, 181, 22]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(399, 290, F3, 26) (dual of [290, 191, 27]-code) | [i] | ✔ | |
3 | Linear OA(379, 260, F3, 23) (dual of [260, 181, 24]-code) | [i] | ✔ | |
4 | Linear OA(397, 283, F3, 26) (dual of [283, 186, 27]-code) | [i] | ✔ | |
5 | Linear OA(386, 267, F3, 24) (dual of [267, 181, 25]-code) | [i] | ✔ | |
6 | Linear OA(394, 275, F3, 26) (dual of [275, 181, 27]-code) | [i] | ✔ | |
7 | Linear OA(385, 261, F3, 25) (dual of [261, 176, 26]-code) | [i] | ✔ | |
8 | Linear OA(383, 259, F3, 24) (dual of [259, 176, 25]-code) | [i] | ✔ | |
9 | Linear OA(392, 268, F3, 26) (dual of [268, 176, 27]-code) | [i] | ✔ | |
10 | Linear OA(3100, 276, F3, 28) (dual of [276, 176, 29]-code) | [i] | ✔ |