Information on Result #703294

Linear OA(379, 260, F3, 23) (dual of [260, 181, 24]-code), using construction XX applied to C1 = C([239,18]), C2 = C([0,19]), C3 = C1 + C2 = C([0,18]), and C∩ = C1 ∩ C2 = C([239,19]) based on
  1. linear OA(371, 242, F3, 22) (dual of [242, 171, 23]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,18}, and designed minimum distance d ≥ |I|+1 = 23 [i]
  2. linear OA(366, 242, F3, 20) (dual of [242, 176, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
  3. linear OA(376, 242, F3, 23) (dual of [242, 166, 24]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,19}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  4. linear OA(361, 242, F3, 19) (dual of [242, 181, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
  5. linear OA(33, 13, F3, 2) (dual of [13, 10, 3]-code), using
  6. linear OA(30, 5, F3, 0) (dual of [5, 5, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(380, 265, F3, 23) (dual of [265, 185, 24]-code) [i]VarÅ¡amov–Edel Lengthening
2Linear OOA(379, 130, F3, 2, 23) (dual of [(130, 2), 181, 24]-NRT-code) [i]OOA Folding
3Linear OOA(379, 86, F3, 3, 23) (dual of [(86, 3), 179, 24]-NRT-code) [i]