Information on Result #703307

Linear OA(386, 242, F3, 26) (dual of [242, 156, 27]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {97,98,…,122}, and designed minimum distance d ≥ |I|+1 = 27

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(395, 277, F3, 26) (dual of [277, 182, 27]-code) [i]Construction XX with Cyclic Codes
2Linear OA(393, 269, F3, 26) (dual of [269, 176, 27]-code) [i]
3Linear OA(390, 262, F3, 26) (dual of [262, 172, 27]-code) [i]
4Linear OA(387, 253, F3, 26) (dual of [253, 166, 27]-code) [i]
5Linear OA(393, 254, F3, 28) (dual of [254, 161, 29]-code) [i]
6Linear OA(3105, 267, F3, 32) (dual of [267, 162, 33]-code) [i]
7Linear OA(3104, 263, F3, 32) (dual of [263, 159, 33]-code) [i]
8Linear OA(3103, 261, F3, 32) (dual of [261, 158, 33]-code) [i]
9Linear OA(3114, 276, F3, 33) (dual of [276, 162, 34]-code) [i]
10Linear OA(3112, 271, F3, 33) (dual of [271, 159, 34]-code) [i]
11Linear OA(3104, 265, F3, 32) (dual of [265, 161, 33]-code) [i]
12Linear OA(3102, 259, F3, 32) (dual of [259, 157, 33]-code) [i]
13Linear OA(3113, 274, F3, 33) (dual of [274, 161, 34]-code) [i]
14Linear OA(3111, 269, F3, 33) (dual of [269, 158, 34]-code) [i]
15Linear OA(3125, 287, F3, 35) (dual of [287, 162, 36]-code) [i]
16Linear OA(3124, 285, F3, 35) (dual of [285, 161, 36]-code) [i]
17Linear OA(3123, 283, F3, 35) (dual of [283, 160, 36]-code) [i]
18Linear OA(3109, 262, F3, 34) (dual of [262, 153, 35]-code) [i]