Information on Result #703327

Linear OA(386, 242, F3, 26) (dual of [242, 156, 27]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {96,97,…,121}, and designed minimum distance d ≥ |I|+1 = 27

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(399, 275, F3, 27) (dual of [275, 176, 28]-code) [i]Construction XX with Cyclic Codes
2Linear OA(394, 260, F3, 27) (dual of [260, 166, 28]-code) [i]
3Linear OA(3101, 257, F3, 32) (dual of [257, 156, 33]-code) [i]
4Linear OA(3109, 265, F3, 33) (dual of [265, 156, 34]-code) [i]
5Linear OA(3119, 275, F3, 35) (dual of [275, 156, 36]-code) [i]
6Linear OA(3109, 265, F3, 34) (dual of [265, 156, 35]-code) [i]
7Linear OA(3107, 263, F3, 33) (dual of [263, 156, 34]-code) [i]
8Linear OA(3117, 273, F3, 35) (dual of [273, 156, 36]-code) [i]
9Linear OA(3116, 269, F3, 35) (dual of [269, 153, 36]-code) [i]
10Linear OA(3127, 283, F3, 37) (dual of [283, 156, 38]-code) [i]
11Linear OA(3125, 281, F3, 36) (dual of [281, 156, 37]-code) [i]
12Linear OA(3125, 278, F3, 37) (dual of [278, 153, 38]-code) [i]
13Linear OA(3123, 276, F3, 36) (dual of [276, 153, 37]-code) [i]
14Linear OA(3116, 272, F3, 35) (dual of [272, 156, 36]-code) [i]