Information on Result #703329

Linear OA(385, 266, F3, 24) (dual of [266, 181, 25]-code), using construction XX applied to C1 = C([239,18]), C2 = C([0,21]), C3 = C1 + C2 = C([0,18]), and C∩ = C1 ∩ C2 = C([239,21]) based on
  1. linear OA(371, 242, F3, 22) (dual of [242, 171, 23]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,18}, and designed minimum distance d ≥ |I|+1 = 23 [i]
  2. linear OA(371, 242, F3, 22) (dual of [242, 171, 23]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,21], and designed minimum distance d ≥ |I|+1 = 23 [i]
  3. linear OA(381, 242, F3, 25) (dual of [242, 161, 26]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,21}, and designed minimum distance d ≥ |I|+1 = 26 [i]
  4. linear OA(361, 242, F3, 19) (dual of [242, 181, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
  5. linear OA(31, 11, F3, 1) (dual of [11, 10, 2]-code), using
  6. linear OA(33, 13, F3, 2) (dual of [13, 10, 3]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(385, 133, F3, 2, 24) (dual of [(133, 2), 181, 25]-NRT-code) [i]OOA Folding