Information on Result #703381

Linear OA(3115, 275, F3, 33) (dual of [275, 160, 34]-code), using construction XX applied to C1 = C([90,121]), C2 = C([99,122]), C3 = C1 + C2 = C([99,121]), and C∩ = C1 ∩ C2 = C([90,122]) based on
  1. linear OA(396, 242, F3, 32) (dual of [242, 146, 33]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {90,91,…,121}, and designed minimum distance d ≥ |I|+1 = 33 [i]
  2. linear OA(381, 242, F3, 24) (dual of [242, 161, 25]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {99,100,…,122}, and designed minimum distance d ≥ |I|+1 = 25 [i]
  3. linear OA(3101, 242, F3, 33) (dual of [242, 141, 34]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {90,91,…,122}, and designed minimum distance d ≥ |I|+1 = 34 [i]
  4. linear OA(376, 242, F3, 23) (dual of [242, 166, 24]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {99,100,…,121}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  5. linear OA(314, 28, F3, 8) (dual of [28, 14, 9]-code), using
    • construction XX applied to C1 = C({1,2,4,7,13}), C2 = C({0,1,2,4,7}), C3 = C1 + C2 = C({1,2,4,7}), and C∩ = C1 ∩ C2 = C({0,1,2,4,7,13}) [i] based on
      1. linear OA(313, 26, F3, 7) (dual of [26, 13, 8]-code), using the primitive cyclic code C(A) with length 26 = 33−1, defining set A = {1,2,4,7,13}, and minimum distance d ≥ |{1,4,7}| + |{0,1,…,6}∖{1,4}| = 8 (general Roos-bound) [i]
      2. linear OA(313, 26, F3, 7) (dual of [26, 13, 8]-code), using the primitive cyclic code C(A) with length 26 = 33−1, defining set A = {0,1,2,4,7}, and minimum distance d ≥ |{0,1,2}| + |{0,9,18,…,2}∖{−8,−7}| = 8 (general Roos-bound) [i]
      3. linear OA(314, 26, F3, 8) (dual of [26, 12, 9]-code), using the primitive cyclic code C(A) with length 26 = 33−1, defining set A = {0,1,2,4,7,13}, and minimum distance d ≥ |{0,1,2}| + |{0,9,18,…,11}∖{−8,−7}| = 9 (general Roos-bound) [i]
      4. linear OA(312, 26, F3, 6) (dual of [26, 14, 7]-code), using the primitive cyclic code C(A) with length 26 = 33−1, defining set A = {1,2,4,7}, and minimum distance d ≥ |{1,4,7}| + |{0,1,…,5}∖{1,4}| = 7 (general Roos-bound) [i]
      5. linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code), using
      6. linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code) (see above)
  6. linear OA(30, 5, F3, 0) (dual of [5, 5, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.