Information on Result #703388

Linear OA(3101, 242, F3, 34) (dual of [242, 141, 35]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {91,92,…,124}, and designed minimum distance d ≥ |I|+1 = 35

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3119, 286, F3, 33) (dual of [286, 167, 34]-code) [i]Construction XX with Cyclic Codes
2Linear OA(3120, 286, F3, 34) (dual of [286, 166, 35]-code) [i]
3Linear OA(3119, 290, F3, 33) (dual of [290, 171, 34]-code) [i]
4Linear OA(3118, 286, F3, 33) (dual of [286, 168, 34]-code) [i]
5Linear OA(3117, 283, F3, 33) (dual of [283, 166, 34]-code) [i]
6Linear OA(3118, 283, F3, 34) (dual of [283, 165, 35]-code) [i]
7Linear OA(3116, 281, F3, 33) (dual of [281, 165, 34]-code) [i]
8Linear OA(3115, 276, F3, 33) (dual of [276, 161, 34]-code) [i]
9Linear OA(3116, 276, F3, 34) (dual of [276, 160, 35]-code) [i]
10Linear OA(3119, 286, F3, 34) (dual of [286, 167, 35]-code) [i]
11Linear OA(3117, 281, F3, 34) (dual of [281, 164, 35]-code) [i]
12Linear OA(3117, 283, F3, 34) (dual of [283, 166, 35]-code) [i]
13Linear OA(3115, 281, F3, 33) (dual of [281, 166, 34]-code) [i]
14Linear OA(3115, 278, F3, 34) (dual of [278, 163, 35]-code) [i]
15Linear OA(3113, 276, F3, 33) (dual of [276, 163, 34]-code) [i]
16Linear OA(3113, 271, F3, 34) (dual of [271, 158, 35]-code) [i]
17Linear OA(3114, 276, F3, 34) (dual of [276, 162, 35]-code) [i]
18Linear OA(3112, 272, F3, 33) (dual of [272, 160, 34]-code) [i]
19Linear OA(3113, 272, F3, 34) (dual of [272, 159, 35]-code) [i]
20Linear OA(3112, 270, F3, 34) (dual of [270, 158, 35]-code) [i]
21Linear OA(3112, 273, F3, 34) (dual of [273, 161, 35]-code) [i]
22Linear OA(3110, 271, F3, 33) (dual of [271, 161, 34]-code) [i]
23Linear OA(3111, 269, F3, 34) (dual of [269, 158, 35]-code) [i]
24Linear OA(3109, 267, F3, 33) (dual of [267, 158, 34]-code) [i]
25Linear OA(3110, 267, F3, 34) (dual of [267, 157, 35]-code) [i]
26Linear OA(3108, 265, F3, 33) (dual of [265, 157, 34]-code) [i]
27Linear OA(3109, 262, F3, 34) (dual of [262, 153, 35]-code) [i]
28Linear OA(3109, 265, F3, 34) (dual of [265, 156, 35]-code) [i]
29Linear OA(3107, 263, F3, 33) (dual of [263, 156, 34]-code) [i]
30Linear OA(3137, 290, F3, 40) (dual of [290, 153, 41]-code) [i]
31Linear OA(3134, 286, F3, 40) (dual of [286, 152, 41]-code) [i]
32Linear OA(3137, 287, F3, 41) (dual of [287, 150, 42]-code) [i]
33Linear OA(3135, 280, F3, 41) (dual of [280, 145, 42]-code) [i]
34Linear OOA(3101, 121, F3, 2, 34) (dual of [(121, 2), 141, 35]-NRT-code) [i]OOA Folding