Information on Result #703416

Linear OA(3101, 242, F3, 34) (dual of [242, 141, 35]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {88,89,…,121}, and designed minimum distance d ≥ |I|+1 = 35

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3123, 283, F3, 35) (dual of [283, 160, 36]-code) [i]Construction XX with Cyclic Codes
2Linear OA(3119, 275, F3, 35) (dual of [275, 156, 36]-code) [i]
3Linear OA(3129, 290, F3, 36) (dual of [290, 161, 37]-code) [i]
4Linear OA(3128, 286, F3, 36) (dual of [286, 158, 37]-code) [i]
5Linear OA(3127, 283, F3, 36) (dual of [283, 156, 37]-code) [i]
6Linear OA(3128, 283, F3, 37) (dual of [283, 155, 38]-code) [i]
7Linear OA(3126, 281, F3, 36) (dual of [281, 155, 37]-code) [i]
8Linear OA(3127, 283, F3, 37) (dual of [283, 156, 38]-code) [i]
9Linear OA(3125, 281, F3, 36) (dual of [281, 156, 37]-code) [i]
10Linear OA(3125, 278, F3, 37) (dual of [278, 153, 38]-code) [i]
11Linear OA(3123, 276, F3, 36) (dual of [276, 153, 37]-code) [i]
12Linear OA(3107, 253, F3, 35) (dual of [253, 146, 36]-code) [i]
13Linear OA(3121, 262, F3, 39) (dual of [262, 141, 40]-code) [i]
14Linear OA(3120, 257, F3, 39) (dual of [257, 137, 40]-code) [i]
15Linear OA(3129, 270, F3, 41) (dual of [270, 141, 42]-code) [i]
16Linear OA(3128, 265, F3, 41) (dual of [265, 137, 42]-code) [i]
17Linear OA(3137, 278, F3, 43) (dual of [278, 141, 44]-code) [i]
18Linear OA(3135, 276, F3, 42) (dual of [276, 141, 43]-code) [i]
19Linear OOA(3101, 121, F3, 2, 34) (dual of [(121, 2), 141, 35]-NRT-code) [i]OOA Folding