Information on Result #703518

Linear OA(3116, 242, F3, 39) (dual of [242, 126, 40]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {84,85,…,122}, and designed minimum distance d ≥ |I|+1 = 40

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3130, 281, F3, 39) (dual of [281, 151, 40]-code) [i]Construction XX with Cyclic Codes
2Linear OA(3129, 279, F3, 39) (dual of [279, 150, 40]-code) [i]
3Linear OA(3125, 272, F3, 39) (dual of [272, 147, 40]-code) [i]
4Linear OA(3124, 270, F3, 39) (dual of [270, 146, 40]-code) [i]
5Linear OA(3135, 280, F3, 41) (dual of [280, 145, 42]-code) [i]
6Linear OA(3122, 264, F3, 39) (dual of [264, 142, 40]-code) [i]
7Linear OA(3121, 259, F3, 39) (dual of [259, 138, 40]-code) [i]
8Linear OA(3121, 262, F3, 39) (dual of [262, 141, 40]-code) [i]
9Linear OA(3120, 257, F3, 39) (dual of [257, 137, 40]-code) [i]
10Linear OA(3119, 253, F3, 39) (dual of [253, 134, 40]-code) [i]
11Linear OA(3119, 255, F3, 39) (dual of [255, 136, 40]-code) [i]
12Linear OA(3118, 251, F3, 39) (dual of [251, 133, 40]-code) [i]
13Linear OA(3137, 278, F3, 42) (dual of [278, 141, 43]-code) [i]
14Linear OA(3127, 263, F3, 41) (dual of [263, 136, 42]-code) [i]
15Linear OA(3130, 262, F3, 42) (dual of [262, 132, 43]-code) [i]
16Linear OA(3122, 253, F3, 41) (dual of [253, 131, 42]-code) [i]
17Linear OA(3129, 260, F3, 42) (dual of [260, 131, 43]-code) [i]
18Linear OA(3138, 269, F3, 44) (dual of [269, 131, 45]-code) [i]
19Linear OA(3128, 254, F3, 43) (dual of [254, 126, 44]-code) [i]