Information on Result #703539

Linear OA(3121, 242, F3, 41) (dual of [242, 121, 42]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {82,83,…,122}, and designed minimum distance d ≥ |I|+1 = 42

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3136, 282, F3, 41) (dual of [282, 146, 42]-code) [i]Construction XX with Cyclic Codes
2Linear OA(3135, 278, F3, 41) (dual of [278, 143, 42]-code) [i]
3Linear OA(3130, 272, F3, 41) (dual of [272, 142, 42]-code) [i]
4Linear OA(3129, 270, F3, 41) (dual of [270, 141, 42]-code) [i]
5Linear OA(3128, 263, F3, 41) (dual of [263, 135, 42]-code) [i]
6Linear OA(3127, 260, F3, 41) (dual of [260, 133, 42]-code) [i]
7Linear OA(3128, 264, F3, 41) (dual of [264, 136, 42]-code) [i]
8Linear OA(3127, 261, F3, 41) (dual of [261, 134, 42]-code) [i]
9Linear OA(3135, 271, F3, 43) (dual of [271, 136, 44]-code) [i]
10Linear OA(3122, 253, F3, 41) (dual of [253, 131, 42]-code) [i]
11Linear OA(3128, 254, F3, 43) (dual of [254, 126, 44]-code) [i]
12Linear OA(3135, 262, F3, 44) (dual of [262, 127, 45]-code) [i]