Information on Result #703552
Linear OA(3111, 252, F3, 36) (dual of [252, 141, 37]-code), using construction XX applied to C1 = C([241,33]), C2 = C([0,34]), C3 = C1 + C2 = C([0,33]), and C∩ = C1 ∩ C2 = C([241,34]) based on
- linear OA(3106, 242, F3, 35) (dual of [242, 136, 36]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−1,0,…,33}, and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(3106, 242, F3, 35) (dual of [242, 136, 36]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,34], and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(3111, 242, F3, 36) (dual of [242, 131, 37]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−1,0,…,34}, and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(3101, 242, F3, 34) (dual of [242, 141, 35]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,33], and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(30, 5, F3, 0) (dual of [5, 5, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(30, s, F3, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(30, 5, F3, 0) (dual of [5, 5, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(3112, 255, F3, 36) (dual of [255, 143, 37]-code) | [i] | Varšamov–Edel Lengthening | |
2 | Linear OA(3113, 260, F3, 36) (dual of [260, 147, 37]-code) | [i] | ||
3 | Linear OOA(3111, 126, F3, 2, 36) (dual of [(126, 2), 141, 37]-NRT-code) | [i] | OOA Folding | |
4 | Linear OOA(3111, 84, F3, 3, 36) (dual of [(84, 3), 141, 37]-NRT-code) | [i] |