Information on Result #703559
Linear OA(3120, 257, F3, 39) (dual of [257, 137, 40]-code), using construction XX applied to C1 = C([84,121]), C2 = C([88,122]), C3 = C1 + C2 = C([88,121]), and C∩ = C1 ∩ C2 = C([84,122]) based on
- linear OA(3111, 242, F3, 38) (dual of [242, 131, 39]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {84,85,…,121}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(3106, 242, F3, 35) (dual of [242, 136, 36]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {88,89,…,122}, and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(3116, 242, F3, 39) (dual of [242, 126, 40]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {84,85,…,122}, and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(3101, 242, F3, 34) (dual of [242, 141, 35]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {88,89,…,121}, and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(34, 10, F3, 3) (dual of [10, 6, 4]-code or 10-cap in PG(3,3)), using
- linear OA(30, 5, F3, 0) (dual of [5, 5, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(30, s, F3, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(3120, 128, F3, 2, 39) (dual of [(128, 2), 136, 40]-NRT-code) | [i] | OOA Folding |