Information on Result #703693
Linear OA(3230, 262, F3, 128) (dual of [262, 32, 129]-code), using construction XX applied to C1 = C([239,120]), C2 = C([1,124]), C3 = C1 + C2 = C([1,120]), and C∩ = C1 ∩ C2 = C([239,124]) based on
- linear OA(3216, 242, F3, 124) (dual of [242, 26, 125]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,120}, and designed minimum distance d ≥ |I|+1 = 125 [i]
- linear OA(3216, 242, F3, 124) (dual of [242, 26, 125]-code), using the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,124], and designed minimum distance d ≥ |I|+1 = 125 [i]
- linear OA(3222, 242, F3, 128) (dual of [242, 20, 129]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,124}, and designed minimum distance d ≥ |I|+1 = 129 [i]
- linear OA(3210, 242, F3, 120) (dual of [242, 32, 121]-code), using the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,120], and designed minimum distance d ≥ |I|+1 = 121 [i]
- linear OA(34, 10, F3, 3) (dual of [10, 6, 4]-code or 10-cap in PG(3,3)), using
- linear OA(34, 10, F3, 3) (dual of [10, 6, 4]-code or 10-cap in PG(3,3)) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(3236, 268, F3, 128) (dual of [268, 32, 129]-code) | [i] | Code Embedding in Larger Space | |
2 | Linear OA(3250, 282, F3, 128) (dual of [282, 32, 129]-code) | [i] | ||
3 | Linear OA(3229, 261, F3, 127) (dual of [261, 32, 128]-code) | [i] | Truncation | |
4 | Linear OA(3226, 258, F3, 124) (dual of [258, 32, 125]-code) | [i] | ||
5 | Linear OA(3225, 257, F3, 123) (dual of [257, 32, 124]-code) | [i] | ||
6 | Linear OA(3224, 256, F3, 122) (dual of [256, 32, 123]-code) | [i] | ||
7 | Linear OA(3223, 255, F3, 121) (dual of [255, 32, 122]-code) | [i] | ||
8 | Linear OA(3222, 254, F3, 120) (dual of [254, 32, 121]-code) | [i] | ||
9 | Linear OA(3220, 252, F3, 118) (dual of [252, 32, 119]-code) | [i] | ||
10 | Linear OA(3217, 249, F3, 115) (dual of [249, 32, 116]-code) | [i] | ||
11 | Linear OA(3216, 248, F3, 114) (dual of [248, 32, 115]-code) | [i] | ||
12 | Linear OA(3215, 247, F3, 113) (dual of [247, 32, 114]-code) | [i] | ||
13 | Linear OA(3214, 246, F3, 112) (dual of [246, 32, 113]-code) | [i] | ||
14 | Linear OA(3213, 245, F3, 111) (dual of [245, 32, 112]-code) | [i] | ||
15 | Linear OA(3209, 241, F3, 107) (dual of [241, 32, 108]-code) | [i] | ||
16 | Linear OA(3208, 240, F3, 106) (dual of [240, 32, 107]-code) | [i] | ||
17 | Linear OA(3207, 239, F3, 105) (dual of [239, 32, 106]-code) | [i] | ||
18 | Linear OA(3206, 238, F3, 104) (dual of [238, 32, 105]-code) | [i] | ||
19 | Linear OA(3205, 237, F3, 103) (dual of [237, 32, 104]-code) | [i] | ||
20 | Linear OA(3204, 236, F3, 102) (dual of [236, 32, 103]-code) | [i] | ||
21 | Linear OA(3203, 235, F3, 101) (dual of [235, 32, 102]-code) | [i] | ||
22 | Linear OA(3202, 234, F3, 100) (dual of [234, 32, 101]-code) | [i] | ||
23 | Linear OA(3201, 233, F3, 99) (dual of [233, 32, 100]-code) | [i] | ||
24 | Linear OA(3200, 232, F3, 98) (dual of [232, 32, 99]-code) | [i] | ||
25 | Linear OA(3199, 231, F3, 97) (dual of [231, 32, 98]-code) | [i] | ||
26 | Linear OA(3198, 230, F3, 96) (dual of [230, 32, 97]-code) | [i] | ||
27 | Linear OA(3197, 229, F3, 95) (dual of [229, 32, 96]-code) | [i] | ||
28 | Linear OA(3196, 228, F3, 94) (dual of [228, 32, 95]-code) | [i] | ||
29 | Linear OA(3195, 227, F3, 93) (dual of [227, 32, 94]-code) | [i] | ||
30 | Linear OA(3194, 226, F3, 92) (dual of [226, 32, 93]-code) | [i] | ||
31 | Linear OA(3193, 225, F3, 91) (dual of [225, 32, 92]-code) | [i] | ||
32 | Linear OA(3192, 224, F3, 90) (dual of [224, 32, 91]-code) | [i] | ||
33 | Linear OA(3247, 280, F3, 128) (dual of [280, 33, 129]-code) | [i] | Construction X with Varšamov Bound | |
34 | Linear OOA(3230, 131, F3, 2, 128) (dual of [(131, 2), 32, 129]-NRT-code) | [i] | OOA Folding |