Information on Result #703732

Linear OA(3248, 274, F3, 137) (dual of [274, 26, 138]-code), using construction XX applied to C1 = C([109,241]), C2 = C([118,3]), C3 = C1 + C2 = C([118,241]), and C∩ = C1 ∩ C2 = C([109,3]) based on
  1. linear OA(3226, 242, F3, 133) (dual of [242, 16, 134]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {109,110,…,241}, and designed minimum distance d ≥ |I|+1 = 134 [i]
  2. linear OA(3222, 242, F3, 128) (dual of [242, 20, 129]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {118,119,…,3}, and designed minimum distance d ≥ |I|+1 = 129 [i]
  3. linear OA(3232, 242, F3, 137) (dual of [242, 10, 138]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {109,110,…,3}, and designed minimum distance d ≥ |I|+1 = 138 [i]
  4. linear OA(3216, 242, F3, 124) (dual of [242, 26, 125]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {118,119,…,241}, and designed minimum distance d ≥ |I|+1 = 125 [i]
  5. linear OA(312, 22, F3, 8) (dual of [22, 10, 9]-code), using
  6. linear OA(34, 10, F3, 3) (dual of [10, 6, 4]-code or 10-cap in PG(3,3)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3248, 274, F3, 136) (dual of [274, 26, 137]-code) [i]Strength Reduction
2Linear OOA(3248, 137, F3, 2, 137) (dual of [(137, 2), 26, 138]-NRT-code) [i]OOA Folding
3Linear OOA(3248, 91, F3, 3, 137) (dual of [(91, 3), 25, 138]-NRT-code) [i]