Information on Result #703743

Linear OA(3250, 276, F3, 139) (dual of [276, 26, 140]-code), using construction XX applied to C1 = C([233,124]), C2 = C([1,130]), C3 = C1 + C2 = C([1,124]), and C∩ = C1 ∩ C2 = C([233,130]) based on
  1. linear OA(3227, 242, F3, 134) (dual of [242, 15, 135]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−9,−8,…,124}, and designed minimum distance d ≥ |I|+1 = 135 [i]
  2. linear OA(3221, 242, F3, 130) (dual of [242, 21, 131]-code), using the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,130], and designed minimum distance d ≥ |I|+1 = 131 [i]
  3. linear OA(3232, 242, F3, 140) (dual of [242, 10, 141]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−9,−8,…,130}, and designed minimum distance d ≥ |I|+1 = 141 [i]
  4. linear OA(3216, 242, F3, 124) (dual of [242, 26, 125]-code), using the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,124], and designed minimum distance d ≥ |I|+1 = 125 [i]
  5. linear OA(312, 23, F3, 8) (dual of [23, 11, 9]-code), using
  6. linear OA(36, 11, F3, 5) (dual of [11, 5, 6]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3250, 276, F3, 138) (dual of [276, 26, 139]-code) [i]Strength Reduction
2Linear OA(3250, 276, F3, 137) (dual of [276, 26, 138]-code) [i]
3Linear OA(3249, 275, F3, 138) (dual of [275, 26, 139]-code) [i]Truncation
4Linear OA(3247, 273, F3, 136) (dual of [273, 26, 137]-code) [i]
5Linear OOA(3250, 138, F3, 2, 139) (dual of [(138, 2), 26, 140]-NRT-code) [i]OOA Folding
6Linear OOA(3250, 92, F3, 3, 139) (dual of [(92, 3), 26, 140]-NRT-code) [i]
7Linear OOA(3250, 55, F3, 5, 139) (dual of [(55, 5), 25, 140]-NRT-code) [i]