Information on Result #703872

Linear OA(365, 374, F3, 17) (dual of [374, 309, 18]-code), using construction XX applied to C1 = C([167,182]), C2 = C([169,183]), C3 = C1 + C2 = C([169,182]), and C∩ = C1 ∩ C2 = C([167,183]) based on
  1. linear OA(358, 364, F3, 16) (dual of [364, 306, 17]-code), using the BCH-code C(I) with length 364 | 36−1, defining interval I = {167,168,…,182}, and designed minimum distance d ≥ |I|+1 = 17 [i]
  2. linear OA(361, 364, F3, 15) (dual of [364, 303, 16]-code), using the BCH-code C(I) with length 364 | 36−1, defining interval I = {169,170,…,183}, and designed minimum distance d ≥ |I|+1 = 16 [i]
  3. linear OA(364, 364, F3, 17) (dual of [364, 300, 18]-code), using the BCH-code C(I) with length 364 | 36−1, defining interval I = {167,168,…,183}, and designed minimum distance d ≥ |I|+1 = 18 [i]
  4. linear OA(355, 364, F3, 14) (dual of [364, 309, 15]-code), using the BCH-code C(I) with length 364 | 36−1, defining interval I = {169,170,…,182}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  5. linear OA(31, 4, F3, 1) (dual of [4, 3, 2]-code), using
  6. linear OA(30, 6, F3, 0) (dual of [6, 6, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(365, 336, F3, 2, 17) (dual of [(336, 2), 607, 18]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(365, 336, F3, 3, 17) (dual of [(336, 3), 943, 18]-NRT-code) [i]
3Linear OOA(365, 336, F3, 4, 17) (dual of [(336, 4), 1279, 18]-NRT-code) [i]
4Linear OOA(365, 336, F3, 5, 17) (dual of [(336, 5), 1615, 18]-NRT-code) [i]
5Digital (48, 65, 336)-net over F3 [i]
6Linear OOA(365, 187, F3, 2, 17) (dual of [(187, 2), 309, 18]-NRT-code) [i]OOA Folding
7Linear OOA(365, 124, F3, 3, 17) (dual of [(124, 3), 307, 18]-NRT-code) [i]