Information on Result #703950

Linear OA(3119, 380, F3, 32) (dual of [380, 261, 33]-code), using construction XX applied to C1 = C([169,198]), C2 = C([167,195]), C3 = C1 + C2 = C([169,195]), and C∩ = C1 ∩ C2 = C([167,198]) based on
  1. linear OA(3112, 364, F3, 30) (dual of [364, 252, 31]-code), using the BCH-code C(I) with length 364 | 36−1, defining interval I = {169,170,…,198}, and designed minimum distance d ≥ |I|+1 = 31 [i]
  2. linear OA(3106, 364, F3, 29) (dual of [364, 258, 30]-code), using the BCH-code C(I) with length 364 | 36−1, defining interval I = {167,168,…,195}, and designed minimum distance d ≥ |I|+1 = 30 [i]
  3. linear OA(3115, 364, F3, 32) (dual of [364, 249, 33]-code), using the BCH-code C(I) with length 364 | 36−1, defining interval I = {167,168,…,198}, and designed minimum distance d ≥ |I|+1 = 33 [i]
  4. linear OA(3103, 364, F3, 27) (dual of [364, 261, 28]-code), using the BCH-code C(I) with length 364 | 36−1, defining interval I = {169,170,…,195}, and designed minimum distance d ≥ |I|+1 = 28 [i]
  5. linear OA(33, 12, F3, 2) (dual of [12, 9, 3]-code), using
  6. linear OA(31, 4, F3, 1) (dual of [4, 3, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(3119, 190, F3, 2, 32) (dual of [(190, 2), 261, 33]-NRT-code) [i]OOA Folding
2Linear OOA(3119, 126, F3, 3, 32) (dual of [(126, 3), 259, 33]-NRT-code) [i]