Information on Result #704196

Linear OA(359, 750, F3, 14) (dual of [750, 691, 15]-code), using construction XX applied to C1 = C([725,9]), C2 = C([0,10]), C3 = C1 + C2 = C([0,9]), and C∩ = C1 ∩ C2 = C([725,10]) based on
  1. linear OA(349, 728, F3, 13) (dual of [728, 679, 14]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−3,−2,…,9}, and designed minimum distance d ≥ |I|+1 = 14 [i]
  2. linear OA(343, 728, F3, 11) (dual of [728, 685, 12]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 36−1, defining interval I = [0,10], and designed minimum distance d ≥ |I|+1 = 12 [i]
  3. linear OA(355, 728, F3, 14) (dual of [728, 673, 15]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−3,−2,…,10}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  4. linear OA(337, 728, F3, 10) (dual of [728, 691, 11]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 36−1, defining interval I = [0,9], and designed minimum distance d ≥ |I|+1 = 11 [i]
  5. linear OA(34, 16, F3, 2) (dual of [16, 12, 3]-code), using
  6. linear OA(30, 6, F3, 0) (dual of [6, 6, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(359, 375, F3, 2, 14) (dual of [(375, 2), 691, 15]-NRT-code) [i]OOA Folding
2Linear OOA(359, 250, F3, 3, 14) (dual of [(250, 3), 691, 15]-NRT-code) [i]
3Linear OOA(359, 187, F3, 4, 14) (dual of [(187, 4), 689, 15]-NRT-code) [i]