Information on Result #704226

Linear OA(364, 747, F3, 15) (dual of [747, 683, 16]-code), using construction XX applied to C1 = C([351,364]), C2 = C([354,365]), C3 = C1 + C2 = C([354,364]), and C∩ = C1 ∩ C2 = C([351,365]) based on
  1. linear OA(355, 728, F3, 14) (dual of [728, 673, 15]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {351,352,…,364}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  2. linear OA(349, 728, F3, 12) (dual of [728, 679, 13]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {354,355,…,365}, and designed minimum distance d ≥ |I|+1 = 13 [i]
  3. linear OA(361, 728, F3, 15) (dual of [728, 667, 16]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {351,352,…,365}, and designed minimum distance d ≥ |I|+1 = 16 [i]
  4. linear OA(343, 728, F3, 11) (dual of [728, 685, 12]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {354,355,…,364}, and designed minimum distance d ≥ |I|+1 = 12 [i]
  5. linear OA(33, 13, F3, 2) (dual of [13, 10, 3]-code), using
  6. linear OA(30, 6, F3, 0) (dual of [6, 6, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(364, 570, F3, 2, 15) (dual of [(570, 2), 1076, 16]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(364, 570, F3, 3, 15) (dual of [(570, 3), 1646, 16]-NRT-code) [i]
3Linear OOA(364, 570, F3, 4, 15) (dual of [(570, 4), 2216, 16]-NRT-code) [i]
4Linear OOA(364, 570, F3, 5, 15) (dual of [(570, 5), 2786, 16]-NRT-code) [i]
5Digital (49, 64, 570)-net over F3 [i]