Information on Result #704259

Linear OA(363, 742, F3, 16) (dual of [742, 679, 17]-code), using construction XX applied to C1 = C([354,367]), C2 = C([352,365]), C3 = C1 + C2 = C([354,365]), and C∩ = C1 ∩ C2 = C([352,367]) based on
  1. linear OA(355, 728, F3, 14) (dual of [728, 673, 15]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {354,355,…,367}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  2. linear OA(355, 728, F3, 14) (dual of [728, 673, 15]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {352,353,…,365}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  3. linear OA(361, 728, F3, 16) (dual of [728, 667, 17]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {352,353,…,367}, and designed minimum distance d ≥ |I|+1 = 17 [i]
  4. linear OA(349, 728, F3, 12) (dual of [728, 679, 13]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {354,355,…,365}, and designed minimum distance d ≥ |I|+1 = 13 [i]
  5. linear OA(31, 7, F3, 1) (dual of [7, 6, 2]-code), using
  6. linear OA(31, 7, F3, 1) (dual of [7, 6, 2]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(364, 743, F3, 16) (dual of [743, 679, 17]-code) [i]Code Embedding in Larger Space
2Linear OOA(363, 371, F3, 2, 16) (dual of [(371, 2), 679, 17]-NRT-code) [i]OOA Folding
3Linear OOA(363, 247, F3, 3, 16) (dual of [(247, 3), 678, 17]-NRT-code) [i]
4Linear OOA(363, 185, F3, 4, 16) (dual of [(185, 4), 677, 17]-NRT-code) [i]
5Linear OOA(363, 148, F3, 5, 16) (dual of [(148, 5), 677, 17]-NRT-code) [i]