Information on Result #704266

Linear OA(390, 770, F3, 20) (dual of [770, 680, 21]-code), using construction XX applied to C1 = C([346,363]), C2 = C([352,365]), C3 = C1 + C2 = C([352,363]), and C∩ = C1 ∩ C2 = C([346,365]) based on
  1. linear OA(372, 728, F3, 18) (dual of [728, 656, 19]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {346,347,…,363}, and designed minimum distance d ≥ |I|+1 = 19 [i]
  2. linear OA(355, 728, F3, 14) (dual of [728, 673, 15]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {352,353,…,365}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  3. linear OA(379, 728, F3, 20) (dual of [728, 649, 21]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {346,347,…,365}, and designed minimum distance d ≥ |I|+1 = 21 [i]
  4. linear OA(348, 728, F3, 12) (dual of [728, 680, 13]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {352,353,…,363}, and designed minimum distance d ≥ |I|+1 = 13 [i]
  5. linear OA(310, 34, F3, 5) (dual of [34, 24, 6]-code), using
  6. linear OA(31, 8, F3, 1) (dual of [8, 7, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(390, 385, F3, 2, 20) (dual of [(385, 2), 680, 21]-NRT-code) [i]OOA Folding