Information on Result #704317

Linear OA(383, 750, F3, 20) (dual of [750, 667, 21]-code), using construction XX applied to C1 = C([725,15]), C2 = C([0,16]), C3 = C1 + C2 = C([0,15]), and C∩ = C1 ∩ C2 = C([725,16]) based on
  1. linear OA(373, 728, F3, 19) (dual of [728, 655, 20]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−3,−2,…,15}, and designed minimum distance d ≥ |I|+1 = 20 [i]
  2. linear OA(367, 728, F3, 17) (dual of [728, 661, 18]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 36−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
  3. linear OA(379, 728, F3, 20) (dual of [728, 649, 21]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−3,−2,…,16}, and designed minimum distance d ≥ |I|+1 = 21 [i]
  4. linear OA(361, 728, F3, 16) (dual of [728, 667, 17]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 36−1, defining interval I = [0,15], and designed minimum distance d ≥ |I|+1 = 17 [i]
  5. linear OA(34, 16, F3, 2) (dual of [16, 12, 3]-code), using
  6. linear OA(30, 6, F3, 0) (dual of [6, 6, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(383, 375, F3, 2, 20) (dual of [(375, 2), 667, 21]-NRT-code) [i]OOA Folding
2Linear OOA(383, 250, F3, 3, 20) (dual of [(250, 3), 667, 21]-NRT-code) [i]
3Linear OOA(383, 187, F3, 4, 20) (dual of [(187, 4), 665, 21]-NRT-code) [i]