Information on Result #704343

Linear OA(391, 753, F3, 22) (dual of [753, 662, 23]-code), using construction XX applied to C1 = C([725,16]), C2 = C([1,18]), C3 = C1 + C2 = C([1,16]), and C∩ = C1 ∩ C2 = C([725,18]) based on
  1. linear OA(379, 728, F3, 20) (dual of [728, 649, 21]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−3,−2,…,16}, and designed minimum distance d ≥ |I|+1 = 21 [i]
  2. linear OA(372, 728, F3, 18) (dual of [728, 656, 19]-code), using the primitive narrow-sense BCH-code C(I) with length 728 = 36−1, defining interval I = [1,18], and designed minimum distance d ≥ |I|+1 = 19 [i]
  3. linear OA(385, 728, F3, 22) (dual of [728, 643, 23]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−3,−2,…,18}, and designed minimum distance d ≥ |I|+1 = 23 [i]
  4. linear OA(366, 728, F3, 16) (dual of [728, 662, 17]-code), using the primitive narrow-sense BCH-code C(I) with length 728 = 36−1, defining interval I = [1,16], and designed minimum distance d ≥ |I|+1 = 17 [i]
  5. linear OA(35, 18, F3, 3) (dual of [18, 13, 4]-code or 18-cap in PG(4,3)), using
  6. linear OA(31, 7, F3, 1) (dual of [7, 6, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(391, 376, F3, 2, 22) (dual of [(376, 2), 661, 23]-NRT-code) [i]OOA Folding
2Linear OOA(391, 251, F3, 3, 22) (dual of [(251, 3), 662, 23]-NRT-code) [i]
3Linear OOA(391, 188, F3, 4, 22) (dual of [(188, 4), 661, 23]-NRT-code) [i]