Information on Result #704499
Linear OA(3118, 728, F3, 30) (dual of [728, 610, 31]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {336,337,…,365}, and designed minimum distance d ≥ |I|+1 = 31
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(3118, 533, F3, 2, 30) (dual of [(533, 2), 948, 31]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(3118, 533, F3, 3, 30) (dual of [(533, 3), 1481, 31]-NRT-code) | [i] | ||
3 | Linear OOA(3118, 533, F3, 4, 30) (dual of [(533, 4), 2014, 31]-NRT-code) | [i] | ||
4 | Linear OOA(3118, 533, F3, 5, 30) (dual of [(533, 5), 2547, 31]-NRT-code) | [i] | ||
5 | Digital (88, 118, 533)-net over F3 | [i] | ||
6 | Linear OA(3133, 773, F3, 30) (dual of [773, 640, 31]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
7 | Linear OA(3132, 771, F3, 30) (dual of [771, 639, 31]-code) | [i] | ✔ | |
8 | Linear OA(3129, 767, F3, 30) (dual of [767, 638, 31]-code) | [i] | ✔ | |
9 | Linear OA(3127, 764, F3, 30) (dual of [764, 637, 31]-code) | [i] | ✔ | |
10 | Linear OA(3126, 762, F3, 30) (dual of [762, 636, 31]-code) | [i] | ✔ | |
11 | Linear OA(3139, 772, F3, 32) (dual of [772, 633, 33]-code) | [i] | ✔ | |
12 | Linear OA(3124, 756, F3, 30) (dual of [756, 632, 31]-code) | [i] | ✔ | |
13 | Linear OA(3123, 754, F3, 30) (dual of [754, 631, 31]-code) | [i] | ✔ | |
14 | Linear OA(3122, 748, F3, 30) (dual of [748, 626, 31]-code) | [i] | ✔ | |
15 | Linear OA(3121, 746, F3, 30) (dual of [746, 625, 31]-code) | [i] | ✔ | |
16 | Linear OA(3142, 772, F3, 33) (dual of [772, 630, 34]-code) | [i] | ✔ | |
17 | Linear OA(3130, 755, F3, 32) (dual of [755, 625, 33]-code) | [i] | ✔ | |
18 | Linear OA(3157, 790, F3, 35) (dual of [790, 633, 36]-code) | [i] | ✔ | |
19 | Linear OA(3134, 749, F3, 33) (dual of [749, 615, 34]-code) | [i] | ✔ | |
20 | Linear OA(3125, 741, F3, 32) (dual of [741, 616, 33]-code) | [i] | ✔ | |
21 | Linear OA(3148, 773, F3, 35) (dual of [773, 625, 36]-code) | [i] | ✔ | |
22 | Linear OA(3134, 750, F3, 33) (dual of [750, 616, 34]-code) | [i] | ✔ | |
23 | Linear OA(3133, 747, F3, 33) (dual of [747, 614, 34]-code) | [i] | ✔ | |
24 | Linear OA(3157, 782, F3, 36) (dual of [782, 625, 37]-code) | [i] | ✔ | |
25 | Linear OA(3155, 776, F3, 36) (dual of [776, 621, 37]-code) | [i] | ✔ | |
26 | Linear OA(3153, 770, F3, 36) (dual of [770, 617, 37]-code) | [i] | ✔ | |
27 | Linear OA(3151, 764, F3, 36) (dual of [764, 613, 37]-code) | [i] | ✔ | |
28 | Linear OA(3143, 759, F3, 35) (dual of [759, 616, 36]-code) | [i] | ✔ | |
29 | Linear OA(3152, 768, F3, 36) (dual of [768, 616, 37]-code) | [i] | ✔ | |
30 | Linear OA(3150, 762, F3, 36) (dual of [762, 612, 37]-code) | [i] | ✔ | |
31 | Linear OA(3132, 742, F3, 34) (dual of [742, 610, 35]-code) | [i] | ✔ | |
32 | Linear OA(3150, 760, F3, 37) (dual of [760, 610, 38]-code) | [i] | ✔ |