Information on Result #704752

Linear OA(3156, 780, F3, 36) (dual of [780, 624, 37]-code), using construction XX applied to C1 = C([333,364]), C2 = C([339,368]), C3 = C1 + C2 = C([339,364]), and C∩ = C1 ∩ C2 = C([333,368]) based on
  1. linear OA(3124, 728, F3, 32) (dual of [728, 604, 33]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {333,334,…,364}, and designed minimum distance d ≥ |I|+1 = 33 [i]
  2. linear OA(3121, 728, F3, 30) (dual of [728, 607, 31]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {339,340,…,368}, and designed minimum distance d ≥ |I|+1 = 31 [i]
  3. linear OA(3142, 728, F3, 36) (dual of [728, 586, 37]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {333,334,…,368}, and designed minimum distance d ≥ |I|+1 = 37 [i]
  4. linear OA(3103, 728, F3, 26) (dual of [728, 625, 27]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {339,340,…,364}, and designed minimum distance d ≥ |I|+1 = 27 [i]
  5. linear OA(38, 28, F3, 5) (dual of [28, 20, 6]-code), using
  6. linear OA(36, 24, F3, 3) (dual of [24, 18, 4]-code or 24-cap in PG(5,3)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(3156, 390, F3, 2, 36) (dual of [(390, 2), 624, 37]-NRT-code) [i]OOA Folding
2Linear OOA(3156, 260, F3, 3, 36) (dual of [(260, 3), 624, 37]-NRT-code) [i]