Information on Result #704829

Linear OA(3158, 768, F3, 38) (dual of [768, 610, 39]-code), using construction XX applied to C1 = C([722,30]), C2 = C([0,31]), C3 = C1 + C2 = C([0,30]), and C∩ = C1 ∩ C2 = C([722,31]) based on
  1. linear OA(3142, 728, F3, 37) (dual of [728, 586, 38]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−6,−5,…,30}, and designed minimum distance d ≥ |I|+1 = 38 [i]
  2. linear OA(3124, 728, F3, 32) (dual of [728, 604, 33]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 36−1, defining interval I = [0,31], and designed minimum distance d ≥ |I|+1 = 33 [i]
  3. linear OA(3148, 728, F3, 38) (dual of [728, 580, 39]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−6,−5,…,31}, and designed minimum distance d ≥ |I|+1 = 39 [i]
  4. linear OA(3118, 728, F3, 31) (dual of [728, 610, 32]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 36−1, defining interval I = [0,30], and designed minimum distance d ≥ |I|+1 = 32 [i]
  5. linear OA(310, 34, F3, 5) (dual of [34, 24, 6]-code), using
  6. linear OA(30, 6, F3, 0) (dual of [6, 6, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(3158, 384, F3, 2, 38) (dual of [(384, 2), 610, 39]-NRT-code) [i]OOA Folding
2Linear OOA(3158, 256, F3, 3, 38) (dual of [(256, 3), 610, 39]-NRT-code) [i]