Information on Result #704945

Linear OA(3179, 784, F3, 41) (dual of [784, 605, 42]-code), using construction XX applied to C1 = C([722,30]), C2 = C([1,34]), C3 = C1 + C2 = C([1,30]), and C∩ = C1 ∩ C2 = C([722,34]) based on
  1. linear OA(3142, 728, F3, 37) (dual of [728, 586, 38]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−6,−5,…,30}, and designed minimum distance d ≥ |I|+1 = 38 [i]
  2. linear OA(3135, 728, F3, 34) (dual of [728, 593, 35]-code), using the primitive narrow-sense BCH-code C(I) with length 728 = 36−1, defining interval I = [1,34], and designed minimum distance d ≥ |I|+1 = 35 [i]
  3. linear OA(3160, 728, F3, 41) (dual of [728, 568, 42]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−6,−5,…,34}, and designed minimum distance d ≥ |I|+1 = 42 [i]
  4. linear OA(3117, 728, F3, 30) (dual of [728, 611, 31]-code), using the primitive narrow-sense BCH-code C(I) with length 728 = 36−1, defining interval I = [1,30], and designed minimum distance d ≥ |I|+1 = 31 [i]
  5. linear OA(313, 32, F3, 6) (dual of [32, 19, 7]-code), using
    • construction XX applied to C1 = C({0,1,2,17}), C2 = C([0,4]), C3 = C1 + C2 = C([0,2]), and C∩ = C1 ∩ C2 = C({0,1,2,4,17}) [i] based on
      1. linear OA(310, 26, F3, 5) (dual of [26, 16, 6]-code), using the primitive cyclic code C(A) with length 26 = 33−1, defining set A = {0,1,2,17}, and minimum distance d ≥ |{−1,0,1,2,3}|+1 = 6 (BCH-bound) [i]
      2. linear OA(310, 26, F3, 5) (dual of [26, 16, 6]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 26 = 33−1, defining interval I = [0,4], and designed minimum distance d ≥ |I|+1 = 6 [i]
      3. linear OA(313, 26, F3, 6) (dual of [26, 13, 7]-code), using the primitive cyclic code C(A) with length 26 = 33−1, defining set A = {0,1,2,4,17}, and minimum distance d ≥ |{−1,0,…,4}|+1 = 7 (BCH-bound) [i]
      4. linear OA(37, 26, F3, 4) (dual of [26, 19, 5]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 26 = 33−1, defining interval I = [0,2], and designed minimum distance d ≥ |I|+1 = 5 [i]
      5. linear OA(30, 3, F3, 0) (dual of [3, 3, 1]-code), using
      6. linear OA(30, 3, F3, 0) (dual of [3, 3, 1]-code) (see above)
  6. linear OA(36, 24, F3, 3) (dual of [24, 18, 4]-code or 24-cap in PG(5,3)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.