Information on Result #705035

Linear OA(3180, 780, F3, 42) (dual of [780, 600, 43]-code), using construction XX applied to C1 = C([334,371]), C2 = C([330,365]), C3 = C1 + C2 = C([334,365]), and C∩ = C1 ∩ C2 = C([330,371]) based on
  1. linear OA(3148, 728, F3, 38) (dual of [728, 580, 39]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {334,335,…,371}, and designed minimum distance d ≥ |I|+1 = 39 [i]
  2. linear OA(3142, 728, F3, 36) (dual of [728, 586, 37]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {330,331,…,365}, and designed minimum distance d ≥ |I|+1 = 37 [i]
  3. linear OA(3166, 728, F3, 42) (dual of [728, 562, 43]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {330,331,…,371}, and designed minimum distance d ≥ |I|+1 = 43 [i]
  4. linear OA(3124, 728, F3, 32) (dual of [728, 604, 33]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {334,335,…,365}, and designed minimum distance d ≥ |I|+1 = 33 [i]
  5. linear OA(38, 28, F3, 5) (dual of [28, 20, 6]-code), using
  6. linear OA(36, 24, F3, 3) (dual of [24, 18, 4]-code or 24-cap in PG(5,3)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(3180, 390, F3, 2, 42) (dual of [(390, 2), 600, 43]-NRT-code) [i]OOA Folding
2Linear OOA(3180, 260, F3, 3, 42) (dual of [(260, 3), 600, 43]-NRT-code) [i]