Information on Result #705095

Linear OA(3154, 740, F3, 39) (dual of [740, 586, 40]-code), using construction XX applied to C1 = C([727,36]), C2 = C([0,37]), C3 = C1 + C2 = C([0,36]), and C∩ = C1 ∩ C2 = C([727,37]) based on
  1. linear OA(3148, 728, F3, 38) (dual of [728, 580, 39]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−1,0,…,36}, and designed minimum distance d ≥ |I|+1 = 39 [i]
  2. linear OA(3148, 728, F3, 38) (dual of [728, 580, 39]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 36−1, defining interval I = [0,37], and designed minimum distance d ≥ |I|+1 = 39 [i]
  3. linear OA(3154, 728, F3, 39) (dual of [728, 574, 40]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−1,0,…,37}, and designed minimum distance d ≥ |I|+1 = 40 [i]
  4. linear OA(3142, 728, F3, 37) (dual of [728, 586, 38]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 36−1, defining interval I = [0,36], and designed minimum distance d ≥ |I|+1 = 38 [i]
  5. linear OA(30, 6, F3, 0) (dual of [6, 6, 1]-code), using
  6. linear OA(30, 6, F3, 0) (dual of [6, 6, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3158, 759, F3, 39) (dual of [759, 601, 40]-code) [i]VarÅ¡amov–Edel Lengthening
2Linear OA(3159, 773, F3, 39) (dual of [773, 614, 40]-code) [i]
3Linear OA(3160, 790, F3, 39) (dual of [790, 630, 40]-code) [i]
4Linear OOA(3154, 370, F3, 2, 39) (dual of [(370, 2), 586, 40]-NRT-code) [i]OOA Folding
5Linear OOA(3154, 246, F3, 3, 39) (dual of [(246, 3), 584, 40]-NRT-code) [i]
6Linear OOA(3154, 185, F3, 4, 39) (dual of [(185, 4), 586, 40]-NRT-code) [i]
7Linear OOA(3154, 148, F3, 5, 39) (dual of [(148, 5), 586, 40]-NRT-code) [i]