Information on Result #705232

Linear OA(3166, 740, F3, 42) (dual of [740, 574, 43]-code), using construction XX applied to C1 = C([727,39]), C2 = C([0,40]), C3 = C1 + C2 = C([0,39]), and C∩ = C1 ∩ C2 = C([727,40]) based on
  1. linear OA(3160, 728, F3, 41) (dual of [728, 568, 42]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−1,0,…,39}, and designed minimum distance d ≥ |I|+1 = 42 [i]
  2. linear OA(3160, 728, F3, 41) (dual of [728, 568, 42]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 36−1, defining interval I = [0,40], and designed minimum distance d ≥ |I|+1 = 42 [i]
  3. linear OA(3166, 728, F3, 42) (dual of [728, 562, 43]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−1,0,…,40}, and designed minimum distance d ≥ |I|+1 = 43 [i]
  4. linear OA(3154, 728, F3, 40) (dual of [728, 574, 41]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 36−1, defining interval I = [0,39], and designed minimum distance d ≥ |I|+1 = 41 [i]
  5. linear OA(30, 6, F3, 0) (dual of [6, 6, 1]-code), using
  6. linear OA(30, 6, F3, 0) (dual of [6, 6, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3167, 746, F3, 42) (dual of [746, 579, 43]-code) [i]VarÅ¡amov–Edel Lengthening
2Linear OA(3168, 756, F3, 42) (dual of [756, 588, 43]-code) [i]
3Linear OA(3169, 771, F3, 42) (dual of [771, 602, 43]-code) [i]
4Linear OOA(3166, 370, F3, 2, 42) (dual of [(370, 2), 574, 43]-NRT-code) [i]OOA Folding
5Linear OOA(3166, 246, F3, 3, 42) (dual of [(246, 3), 572, 43]-NRT-code) [i]
6Linear OOA(3166, 185, F3, 4, 42) (dual of [(185, 4), 574, 43]-NRT-code) [i]
7Linear OOA(3166, 148, F3, 5, 42) (dual of [(148, 5), 574, 43]-NRT-code) [i]