Information on Result #705756

Linear OA(3237, 767, F3, 59) (dual of [767, 530, 60]-code), using construction XX applied to C1 = C([336,392]), C2 = C([334,385]), C3 = C1 + C2 = C([336,385]), and C∩ = C1 ∩ C2 = C([334,392]) based on
  1. linear OA(3217, 728, F3, 57) (dual of [728, 511, 58]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {336,337,…,392}, and designed minimum distance d ≥ |I|+1 = 58 [i]
  2. linear OA(3202, 728, F3, 52) (dual of [728, 526, 53]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {334,335,…,385}, and designed minimum distance d ≥ |I|+1 = 53 [i]
  3. linear OA(3223, 728, F3, 59) (dual of [728, 505, 60]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {334,335,…,392}, and designed minimum distance d ≥ |I|+1 = 60 [i]
  4. linear OA(3196, 728, F3, 50) (dual of [728, 532, 51]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {336,337,…,385}, and designed minimum distance d ≥ |I|+1 = 51 [i]
  5. linear OA(313, 32, F3, 6) (dual of [32, 19, 7]-code), using
    • construction XX applied to C1 = C({0,1,2,17}), C2 = C([0,4]), C3 = C1 + C2 = C([0,2]), and C∩ = C1 ∩ C2 = C({0,1,2,4,17}) [i] based on
      1. linear OA(310, 26, F3, 5) (dual of [26, 16, 6]-code), using the primitive cyclic code C(A) with length 26 = 33−1, defining set A = {0,1,2,17}, and minimum distance d ≥ |{−1,0,1,2,3}|+1 = 6 (BCH-bound) [i]
      2. linear OA(310, 26, F3, 5) (dual of [26, 16, 6]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 26 = 33−1, defining interval I = [0,4], and designed minimum distance d ≥ |I|+1 = 6 [i]
      3. linear OA(313, 26, F3, 6) (dual of [26, 13, 7]-code), using the primitive cyclic code C(A) with length 26 = 33−1, defining set A = {0,1,2,4,17}, and minimum distance d ≥ |{−1,0,…,4}|+1 = 7 (BCH-bound) [i]
      4. linear OA(37, 26, F3, 4) (dual of [26, 19, 5]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 26 = 33−1, defining interval I = [0,2], and designed minimum distance d ≥ |I|+1 = 5 [i]
      5. linear OA(30, 3, F3, 0) (dual of [3, 3, 1]-code), using
      6. linear OA(30, 3, F3, 0) (dual of [3, 3, 1]-code) (see above)
  6. linear OA(31, 7, F3, 1) (dual of [7, 6, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.