Information on Result #705766

Linear OA(3216, 742, F3, 55) (dual of [742, 526, 56]-code), using construction XX applied to C1 = C([315,367]), C2 = C([313,365]), C3 = C1 + C2 = C([315,365]), and C∩ = C1 ∩ C2 = C([313,367]) based on
  1. linear OA(3208, 728, F3, 53) (dual of [728, 520, 54]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {315,316,…,367}, and designed minimum distance d ≥ |I|+1 = 54 [i]
  2. linear OA(3208, 728, F3, 53) (dual of [728, 520, 54]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {313,314,…,365}, and designed minimum distance d ≥ |I|+1 = 54 [i]
  3. linear OA(3214, 728, F3, 55) (dual of [728, 514, 56]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {313,314,…,367}, and designed minimum distance d ≥ |I|+1 = 56 [i]
  4. linear OA(3202, 728, F3, 51) (dual of [728, 526, 52]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {315,316,…,365}, and designed minimum distance d ≥ |I|+1 = 52 [i]
  5. linear OA(31, 7, F3, 1) (dual of [7, 6, 2]-code), using
  6. linear OA(31, 7, F3, 1) (dual of [7, 6, 2]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(3216, 371, F3, 2, 55) (dual of [(371, 2), 526, 56]-NRT-code) [i]OOA Folding
2Linear OOA(3216, 247, F3, 3, 55) (dual of [(247, 3), 525, 56]-NRT-code) [i]
3Linear OOA(3216, 185, F3, 4, 55) (dual of [(185, 4), 524, 56]-NRT-code) [i]
4Linear OOA(3216, 148, F3, 5, 55) (dual of [(148, 5), 524, 56]-NRT-code) [i]