Information on Result #705877
Linear OA(3248, 760, F3, 63) (dual of [760, 512, 64]-code), using construction XX applied to C1 = C([724,57]), C2 = C([1,58]), C3 = C1 + C2 = C([1,57]), and C∩ = C1 ∩ C2 = C([724,58]) based on
- linear OA(3235, 728, F3, 62) (dual of [728, 493, 63]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−4,−3,…,57}, and designed minimum distance d ≥ |I|+1 = 63 [i]
- linear OA(3222, 728, F3, 58) (dual of [728, 506, 59]-code), using the primitive narrow-sense BCH-code C(I) with length 728 = 36−1, defining interval I = [1,58], and designed minimum distance d ≥ |I|+1 = 59 [i]
- linear OA(3241, 728, F3, 63) (dual of [728, 487, 64]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−4,−3,…,58}, and designed minimum distance d ≥ |I|+1 = 64 [i]
- linear OA(3216, 728, F3, 57) (dual of [728, 512, 58]-code), using the primitive narrow-sense BCH-code C(I) with length 728 = 36−1, defining interval I = [1,57], and designed minimum distance d ≥ |I|+1 = 58 [i]
- linear OA(37, 26, F3, 4) (dual of [26, 19, 5]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 26 = 33−1, defining interval I = [0,2], and designed minimum distance d ≥ |I|+1 = 5 [i]
- linear OA(30, 6, F3, 0) (dual of [6, 6, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(30, s, F3, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(3248, 380, F3, 2, 63) (dual of [(380, 2), 512, 64]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(3248, 190, F3, 4, 63) (dual of [(190, 4), 512, 64]-NRT-code) | [i] |