Information on Result #705932

Linear OA(463, 101, F4, 26) (dual of [101, 38, 27]-code), using construction XX applied to C1 = C([0,21]), C2 = C([12,25]), C3 = C1 + C2 = C([12,21]), and C∩ = C1 ∩ C2 = C([0,25]) based on
  1. linear OA(438, 63, F4, 22) (dual of [63, 25, 23]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,21], and designed minimum distance d ≥ |I|+1 = 23 [i]
  2. linear OA(431, 63, F4, 14) (dual of [63, 32, 15]-code), using the primitive BCH-code C(I) with length 63 = 43−1, defining interval I = {12,13,…,25}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  3. linear OA(444, 63, F4, 26) (dual of [63, 19, 27]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,23], and designed minimum distance d ≥ |I|+1 = 27 [i]
  4. linear OA(422, 63, F4, 10) (dual of [63, 41, 11]-code), using the primitive BCH-code C(I) with length 63 = 43−1, defining interval I = {12,13,…,21}, and designed minimum distance d ≥ |I|+1 = 11 [i]
  5. linear OA(415, 28, F4, 11) (dual of [28, 13, 12]-code), using
  6. linear OA(44, 10, F4, 3) (dual of [10, 6, 4]-code or 10-cap in PG(3,4)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(463, 50, F4, 2, 26) (dual of [(50, 2), 37, 27]-NRT-code) [i]OOA Folding