Information on Result #705939

Linear OA(454, 83, F4, 25) (dual of [83, 29, 26]-code), using construction XX applied to C1 = C([1,22]), C2 = C([9,25]), C3 = C1 + C2 = C([9,22]), and C∩ = C1 ∩ C2 = C([1,25]) based on
  1. linear OA(440, 63, F4, 22) (dual of [63, 23, 23]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [1,22], and designed minimum distance d ≥ |I|+1 = 23 [i]
  2. linear OA(437, 63, F4, 17) (dual of [63, 26, 18]-code), using the primitive BCH-code C(I) with length 63 = 43−1, defining interval I = {9,10,…,25}, and designed minimum distance d ≥ |I|+1 = 18 [i]
  3. linear OA(443, 63, F4, 25) (dual of [63, 20, 26]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [1,23], and designed minimum distance d ≥ |I|+1 = 26 [i]
  4. linear OA(431, 63, F4, 14) (dual of [63, 32, 15]-code), using the primitive BCH-code C(I) with length 63 = 43−1, defining interval I = {9,10,…,22}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  5. linear OA(49, 15, F4, 7) (dual of [15, 6, 8]-code), using
  6. linear OA(42, 5, F4, 2) (dual of [5, 3, 3]-code or 5-arc in PG(1,4)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(455, 84, F4, 25) (dual of [84, 29, 26]-code) [i]Code Embedding in Larger Space