Information on Result #706075
Linear OA(441, 255, F4, 14) (dual of [255, 214, 15]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−5,−4,…,8}, and designed minimum distance d ≥ |I|+1 = 15
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive Expurgated Narrow-Sense BCH-Codes [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(441, 171, F4, 2, 14) (dual of [(171, 2), 301, 15]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(441, 171, F4, 3, 14) (dual of [(171, 3), 472, 15]-NRT-code) | [i] | ||
3 | Digital (27, 41, 171)-net over F4 | [i] | ||
4 | Linear OA(449, 283, F4, 14) (dual of [283, 234, 15]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
5 | Linear OA(448, 281, F4, 14) (dual of [281, 233, 15]-code) | [i] | ✔ | |
6 | Linear OA(452, 282, F4, 15) (dual of [282, 230, 16]-code) | [i] | ✔ | |
7 | Linear OA(451, 280, F4, 15) (dual of [280, 229, 16]-code) | [i] | ✔ | |
8 | Linear OA(456, 285, F4, 16) (dual of [285, 229, 17]-code) | [i] | ✔ |