Information on Result #706089
Linear OA(445, 255, F4, 15) (dual of [255, 210, 16]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−5,−4,…,9}, and designed minimum distance d ≥ |I|+1 = 16
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive Expurgated Narrow-Sense BCH-Codes [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(445, 197, F4, 2, 15) (dual of [(197, 2), 349, 16]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(445, 197, F4, 3, 15) (dual of [(197, 3), 546, 16]-NRT-code) | [i] | ||
3 | Digital (30, 45, 197)-net over F4 | [i] | ||
4 | Linear OA(452, 282, F4, 15) (dual of [282, 230, 16]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
5 | Linear OA(451, 280, F4, 15) (dual of [280, 229, 16]-code) | [i] | ✔ | |
6 | Linear OA(455, 280, F4, 16) (dual of [280, 225, 17]-code) | [i] | ✔ | |
7 | Linear OA(462, 287, F4, 18) (dual of [287, 225, 19]-code) | [i] | ✔ |