Information on Result #706098
Linear OA(441, 255, F4, 14) (dual of [255, 214, 15]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {73,74,…,86}, and designed minimum distance d ≥ |I|+1 = 15
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive Expurgated Narrow-Sense BCH-Codes [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(441, 171, F4, 2, 14) (dual of [(171, 2), 301, 15]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(441, 171, F4, 3, 14) (dual of [(171, 3), 472, 15]-NRT-code) | [i] | ||
3 | Digital (27, 41, 171)-net over F4 | [i] | ||
4 | Linear OA(446, 277, F4, 14) (dual of [277, 231, 15]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
5 | Linear OA(444, 270, F4, 14) (dual of [270, 226, 15]-code) | [i] | ✔ | |
6 | Linear OA(443, 264, F4, 14) (dual of [264, 221, 15]-code) | [i] | ✔ | |
7 | Linear OA(442, 264, F4, 14) (dual of [264, 222, 15]-code) | [i] | ✔ | |
8 | Linear OA(462, 281, F4, 19) (dual of [281, 219, 20]-code) | [i] | ✔ | |
9 | Linear OA(461, 279, F4, 19) (dual of [279, 218, 20]-code) | [i] | ✔ | |
10 | Linear OA(468, 283, F4, 20) (dual of [283, 215, 21]-code) | [i] | ✔ | |
11 | Linear OA(474, 285, F4, 22) (dual of [285, 211, 23]-code) | [i] | ✔ | |
12 | Linear OA(472, 286, F4, 22) (dual of [286, 214, 23]-code) | [i] | ✔ |