Information on Result #706098

Linear OA(441, 255, F4, 14) (dual of [255, 214, 15]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {73,74,…,86}, and designed minimum distance d ≥ |I|+1 = 15

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(441, 171, F4, 2, 14) (dual of [(171, 2), 301, 15]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(441, 171, F4, 3, 14) (dual of [(171, 3), 472, 15]-NRT-code) [i]
3Digital (27, 41, 171)-net over F4 [i]
4Linear OA(446, 277, F4, 14) (dual of [277, 231, 15]-code) [i]Construction XX with Cyclic Codes
5Linear OA(444, 270, F4, 14) (dual of [270, 226, 15]-code) [i]
6Linear OA(443, 264, F4, 14) (dual of [264, 221, 15]-code) [i]
7Linear OA(442, 264, F4, 14) (dual of [264, 222, 15]-code) [i]
8Linear OA(462, 281, F4, 19) (dual of [281, 219, 20]-code) [i]
9Linear OA(461, 279, F4, 19) (dual of [279, 218, 20]-code) [i]
10Linear OA(468, 283, F4, 20) (dual of [283, 215, 21]-code) [i]
11Linear OA(474, 285, F4, 22) (dual of [285, 211, 23]-code) [i]
12Linear OA(472, 286, F4, 22) (dual of [286, 214, 23]-code) [i]