Information on Result #706151
Linear OA(453, 255, F4, 18) (dual of [255, 202, 19]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−4,−3,…,13}, and designed minimum distance d ≥ |I|+1 = 19
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(453, 195, F4, 2, 18) (dual of [(195, 2), 337, 19]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(453, 195, F4, 3, 18) (dual of [(195, 3), 532, 19]-NRT-code) | [i] | ||
3 | Digital (35, 53, 195)-net over F4 | [i] | ||
4 | Linear OA(461, 287, F4, 18) (dual of [287, 226, 19]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
5 | Linear OA(460, 282, F4, 18) (dual of [282, 222, 19]-code) | [i] | ✔ | |
6 | Linear OA(470, 285, F4, 21) (dual of [285, 215, 22]-code) | [i] | ✔ | |
7 | Linear OA(468, 282, F4, 21) (dual of [282, 214, 22]-code) | [i] | ✔ | |
8 | Linear OA(473, 288, F4, 22) (dual of [288, 215, 23]-code) | [i] | ✔ | |
9 | Linear OA(471, 285, F4, 22) (dual of [285, 214, 23]-code) | [i] | ✔ |