Information on Result #706152

Linear OA(445, 263, F4, 15) (dual of [263, 218, 16]-code), using construction XX applied to C1 = C([254,12]), C2 = C([0,13]), C3 = C1 + C2 = C([0,12]), and C∩ = C1 ∩ C2 = C([254,13]) based on
  1. linear OA(441, 255, F4, 14) (dual of [255, 214, 15]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−1,0,…,12}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  2. linear OA(441, 255, F4, 14) (dual of [255, 214, 15]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,13], and designed minimum distance d ≥ |I|+1 = 15 [i]
  3. linear OA(445, 255, F4, 15) (dual of [255, 210, 16]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−1,0,…,13}, and designed minimum distance d ≥ |I|+1 = 16 [i]
  4. linear OA(437, 255, F4, 13) (dual of [255, 218, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,12], and designed minimum distance d ≥ |I|+1 = 14 [i]
  5. linear OA(40, 4, F4, 0) (dual of [4, 4, 1]-code), using
  6. linear OA(40, 4, F4, 0) (dual of [4, 4, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(448, 273, F4, 15) (dual of [273, 225, 16]-code) [i]VarÅ¡amov–Edel Lengthening
2Linear OA(449, 284, F4, 15) (dual of [284, 235, 16]-code) [i]
3Linear OA(450, 302, F4, 15) (dual of [302, 252, 16]-code) [i]
4Linear OA(451, 326, F4, 15) (dual of [326, 275, 16]-code) [i]
5Linear OA(452, 356, F4, 15) (dual of [356, 304, 16]-code) [i]
6Linear OA(453, 391, F4, 15) (dual of [391, 338, 16]-code) [i]
7Linear OOA(445, 131, F4, 2, 15) (dual of [(131, 2), 217, 16]-NRT-code) [i]OOA Folding