Information on Result #706198

Linear OA(471, 290, F4, 21) (dual of [290, 219, 22]-code), using construction XX applied to C1 = C([251,12]), C2 = C([1,16]), C3 = C1 + C2 = C([1,12]), and C∩ = C1 ∩ C2 = C([251,16]) based on
  1. linear OA(449, 255, F4, 17) (dual of [255, 206, 18]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−4,−3,…,12}, and designed minimum distance d ≥ |I|+1 = 18 [i]
  2. linear OA(448, 255, F4, 16) (dual of [255, 207, 17]-code), using the primitive narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [1,16], and designed minimum distance d ≥ |I|+1 = 17 [i]
  3. linear OA(461, 255, F4, 21) (dual of [255, 194, 22]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−4,−3,…,16}, and designed minimum distance d ≥ |I|+1 = 22 [i]
  4. linear OA(436, 255, F4, 12) (dual of [255, 219, 13]-code), using the primitive narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [1,12], and designed minimum distance d ≥ |I|+1 = 13 [i]
  5. linear OA(46, 19, F4, 4) (dual of [19, 13, 5]-code), using
  6. linear OA(44, 16, F4, 3) (dual of [16, 12, 4]-code or 16-cap in PG(3,4)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(471, 145, F4, 2, 21) (dual of [(145, 2), 219, 22]-NRT-code) [i]OOA Folding