Information on Result #706206
Linear OA(463, 273, F4, 20) (dual of [273, 210, 21]-code), using construction XX applied to C1 = C([67,85]), C2 = C([71,86]), C3 = C1 + C2 = C([71,85]), and C∩ = C1 ∩ C2 = C([67,86]) based on
- linear OA(455, 255, F4, 19) (dual of [255, 200, 20]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {67,68,…,85}, and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(449, 255, F4, 16) (dual of [255, 206, 17]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {71,72,…,86}, and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(459, 255, F4, 20) (dual of [255, 196, 21]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {67,68,…,86}, and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(445, 255, F4, 15) (dual of [255, 210, 16]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {71,72,…,85}, and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(44, 14, F4, 3) (dual of [14, 10, 4]-code or 14-cap in PG(3,4)), using
- linear OA(40, 4, F4, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(463, 136, F4, 2, 20) (dual of [(136, 2), 209, 21]-NRT-code) | [i] | OOA Folding |