Information on Result #706283

Linear OA(471, 255, F4, 25) (dual of [255, 184, 26]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−4,−3,…,20}, and designed minimum distance d ≥ |I|+1 = 26

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(481, 288, F4, 25) (dual of [288, 207, 26]-code) [i]Construction XX with Cyclic Codes
2Linear OA(479, 286, F4, 24) (dual of [286, 207, 25]-code) [i]
3Linear OA(480, 285, F4, 25) (dual of [285, 205, 26]-code) [i]
4Linear OA(478, 279, F4, 25) (dual of [279, 201, 26]-code) [i]
5Linear OA(476, 277, F4, 24) (dual of [277, 201, 25]-code) [i]
6Linear OA(479, 285, F4, 25) (dual of [285, 206, 26]-code) [i]
7Linear OA(478, 282, F4, 25) (dual of [282, 204, 26]-code) [i]
8Linear OA(476, 276, F4, 25) (dual of [276, 200, 26]-code) [i]
9Linear OA(481, 278, F4, 26) (dual of [278, 197, 27]-code) [i]
10Linear OA(479, 275, F4, 26) (dual of [275, 196, 27]-code) [i]
11Linear OA(486, 283, F4, 27) (dual of [283, 197, 28]-code) [i]
12Linear OA(484, 280, F4, 27) (dual of [280, 196, 28]-code) [i]
13Linear OA(493, 290, F4, 29) (dual of [290, 197, 30]-code) [i]
14Linear OA(491, 288, F4, 28) (dual of [288, 197, 29]-code) [i]
15Linear OA(492, 282, F4, 29) (dual of [282, 190, 30]-code) [i]
16Linear OA(491, 287, F4, 29) (dual of [287, 196, 30]-code) [i]
17Linear OOA(471, 85, F4, 3, 25) (dual of [(85, 3), 184, 26]-NRT-code) [i]OOA Folding