Information on Result #706339
Linear OA(466, 255, F4, 22) (dual of [255, 189, 23]-code), using the primitive narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [1,22], and designed minimum distance d ≥ |I|+1 = 23
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(466, 237, F4, 2, 22) (dual of [(237, 2), 408, 23]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(466, 237, F4, 3, 22) (dual of [(237, 3), 645, 23]-NRT-code) | [i] | ||
3 | Digital (44, 66, 237)-net over F4 | [i] | ||
4 | Linear OA(473, 270, F4, 24) (dual of [270, 197, 25]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
5 | Linear OA(486, 283, F4, 27) (dual of [283, 197, 28]-code) | [i] | ✔ | |
6 | Linear OA(477, 266, F4, 26) (dual of [266, 189, 27]-code) | [i] | ✔ | |
7 | Linear OA(490, 279, F4, 29) (dual of [279, 189, 30]-code) | [i] | ✔ | |
8 | Linear OA(488, 277, F4, 28) (dual of [277, 189, 29]-code) | [i] | ✔ | |
9 | Linear OA(498, 287, F4, 30) (dual of [287, 189, 31]-code) | [i] | ✔ |